①,已知f(x)= | lg(x-1)|,所以相当于把y=lg(x-1)在x轴以下的图像翻着到x轴上方,呈对称
且由题可知,当x=2时,f(x)=0
所以同一个y值是可有2个x值对应的
当实数a,b满足14
==>a-1>1
a>2,与a4(b-1)=(a-1)^2+(b-1)^2+2,10
解得b-1>3,b>4
4(b-1)=(a-1)^2+(b-1)^2+2
==>(b-1)^2-4(b-1)+(a-1)^2+2=0
解得b-1=2+√[2-(a-1)^2]
①,已知f(x)= | lg(x-1)|,所以相当于把y=lg(x-1)在x轴以下的图像翻着到x轴上方,呈对称
且由题可知,当x=2时,f(x)=0
所以同一个y值是可有2个x值对应的
当实数a,b满足14
==>a-1>1
a>2,与a4(b-1)=(a-1)^2+(b-1)^2+2,10
解得b-1>3,b>4
4(b-1)=(a-1)^2+(b-1)^2+2
==>(b-1)^2-4(b-1)+(a-1)^2+2=0
解得b-1=2+√[2-(a-1)^2]