设数列{an}满足:an(n∈N*)是整数,且an+1-an是关于x的方程x2+(an+1-2)x-2an+1=0的根.

1个回答

  • (1)∵an+1-an是关于x的方程x2+(an+1-2)x-2an+1=0的根

    ∴(an+1-an2+(an+1-2)(an+1-an)-2an+1=0

    ∴(an+1-an-2)(2an+1-an)=0

    ∴an+1=an+2,或an+1=[1/2]an

    ∵a1=4且n≥2时,4≤an≤8,

    ∴数列{an}为:4,6,8,4,6,8,…,

    ∴数列{an}的前100项和S100=33(4+6+8)+4=598;

    (2)若a1=-8且an<an+1(n∈N*

    ∵an+1=an+2,或an+1=[1/2]an

    ∴数列{an}的前6项是:-8,-6,-4,-2,0,2或-8,-6,-4,-2,-1,1或:-8,-6,-3,-1,1,3或:-8,-4,-2,0,2,4或-8,-4,-2,-1,1,3

    ∵a6=1,∴数列{an}的前6项是-8,-6,-4,-2,-1,1,且n>4时,an+1=an+2,

    ∴数列{an}的通项公式是an=

    2n−10,n≤4

    2n−11,n≥5;