1)如∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
∵∠BAC=30°,∠DAE=105°
∴∠ACB=75°=∠ABC=∠CAE+∠CEA=∠BDA+∠BAD
∠BAD+∠CAE=∠DAE-∠BAC=75°
∴∠CEA=∠BAD ∠BDA=∠CAE
∴△AEC∽△DAB
CE/AB=AC/BD
xy=1
如果xy=1成立,则CE/AB=AC/BD
则△AEC∽△DAB ∠CEA=∠BAD ∠BDA=∠CAE
∠CAE+∠CEA=∠BDA+∠BAD=(180°-∠BAC)=(180°-a)/2
b-a=∠BAD+∠CAE=∠CAE+∠CEA=(180°-a)/2
2b-a=180°