由韦达定理得
tanα+tanβ=3,
tanα·tanβ = 2
sin(α+β)/cos(α-β)
=[sinα·cosβ+cosα·sinβ]/[cosα·cosβ+sinα·sinβ]
分子和分母都除以cosα·cosβ得
=(tanα+tanβ )/(1+tanα·tanβ )
= 3/(1+2)
=1
由韦达定理得
tanα+tanβ=3,
tanα·tanβ = 2
sin(α+β)/cos(α-β)
=[sinα·cosβ+cosα·sinβ]/[cosα·cosβ+sinα·sinβ]
分子和分母都除以cosα·cosβ得
=(tanα+tanβ )/(1+tanα·tanβ )
= 3/(1+2)
=1