①找规律(n^2-1)^2+(2n)^2=(n^2+1)^2 (n>1的整数)
②证明规律
(n^2-1)^2+(2n)^2
=n^4-2n^2+1+4n^2
=n^4+2n^2+1
=(n^2+1)^2
=右边
3999^2+400^2
=(200^2-1)+(2*200)^2
=(200^2+1)^2
=40001^2
AB=40001
①找规律(n^2-1)^2+(2n)^2=(n^2+1)^2 (n>1的整数)
②证明规律
(n^2-1)^2+(2n)^2
=n^4-2n^2+1+4n^2
=n^4+2n^2+1
=(n^2+1)^2
=右边
3999^2+400^2
=(200^2-1)+(2*200)^2
=(200^2+1)^2
=40001^2
AB=40001