已知角AOB=45度,P是边OA上一点,OP=4根号2,以点p为圆心画圆,圆P交OA于点C

1个回答

  • ∠AOB=45°,OP= 4根号2,OQ=7

    根据余弦定理:

    PQ^2=OP^2+OQ^2-2OP*OQcos45°

    =(4根号2)^2+7^2-2*4根号2*7*根号2/2=25

    PQ=5

    PD/DQ=2/3

    PD/(PD+DQ)=2/(2+3)

    PD/PQ=2/5

    半径PD=PQ*2/5=5*2/5=2

    OP=4根号2,PD=2,QD=OQ=r,根据余弦定理:

    PQ^2=OP^2+OQ^2-2OP*OQcos45°

    如果外切:PQ=PD+QD=2+OQ

    (PD+QD)^2=(4根号2)^2+OQ^2-2*4根号2*OQ*根号2/2

    (2+OQ)^2=32-8OQ

    OQ^2+12OQ-28=0

    (OQ+14)(OQ-2)=0

    OQ+14>14

    ∴OQ=2

    如果内切:PQ=QD-PD=OQ-2

    (QD-PD)^2=(4根号2)^2+OQ^2-2*4根号2*OQ*根号2/2

    (OQ-2)^2=32-8OQ

    (OQ+2)^2=32

    (OQ+2+4根号2)(OQ+2-4根号2)=0

    OQ+2+4根号2>0

    ∴OQ+2-4根号2=0

    ∴OQ=4根号2-2