对e^(x+y)+cos(xy)=0两边求微分,得
d(e^(x+y)+cos(xy))=0
de^(x+y)+dcos(xy)=0
e^(x+y)*(dx+dy)-sin(xy)*(ydx+xdy)=0
e^(x+y)*dy-sin(xy)*xdy=-e^(x+y)*dx+sin(xy)*ydx
(e^(x+y)-sin(xy)*x)dy=(-e^(x+y)+sin(xy)*y)dx
dy/dx=(ysin(xy)-e^(x+y))/(e^(x+y)-xsin(xy))
对e^(x+y)+cos(xy)=0两边求微分,得
d(e^(x+y)+cos(xy))=0
de^(x+y)+dcos(xy)=0
e^(x+y)*(dx+dy)-sin(xy)*(ydx+xdy)=0
e^(x+y)*dy-sin(xy)*xdy=-e^(x+y)*dx+sin(xy)*ydx
(e^(x+y)-sin(xy)*x)dy=(-e^(x+y)+sin(xy)*y)dx
dy/dx=(ysin(xy)-e^(x+y))/(e^(x+y)-xsin(xy))