利用Cauchy不等式和基本不等式得,
(x²+y²+1)/(x+2y)
=[x²/1+(2y)²/4+1]/(x+2y)
≥[(x+2y)²/(1+4)+1]/(x+2y)
=(x+2y)/5+1/(x+2y)
≥2√[(x+2y)/5·1/(x+2y)]
=(2√5)/5.
故所求最小值为:(2√5)/5.
且最小值时,有
x:1=y:2,和(x+2y)/5=1/(x+2y),
解得,x=√5/5,y=2√5/5.
利用Cauchy不等式和基本不等式得,
(x²+y²+1)/(x+2y)
=[x²/1+(2y)²/4+1]/(x+2y)
≥[(x+2y)²/(1+4)+1]/(x+2y)
=(x+2y)/5+1/(x+2y)
≥2√[(x+2y)/5·1/(x+2y)]
=(2√5)/5.
故所求最小值为:(2√5)/5.
且最小值时,有
x:1=y:2,和(x+2y)/5=1/(x+2y),
解得,x=√5/5,y=2√5/5.