∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,
∴AE‖CF,有∠ADF=∠DFC,∠CBE=∠AEB,
又∵DF平分∠ADC,EB平分∠ABC,
∴∠ADF=∠CDF,∠CBE=∠ABE,
∴∠AEB=∠ABE,∠CDF=∠CFD
即CD=CF,AB=AE
又∵AB=CD,
∴CF=AE,
∵AD=BC,∴AE-AD=CF-BC
即DE=BF
∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,
∴AE‖CF,有∠ADF=∠DFC,∠CBE=∠AEB,
又∵DF平分∠ADC,EB平分∠ABC,
∴∠ADF=∠CDF,∠CBE=∠ABE,
∴∠AEB=∠ABE,∠CDF=∠CFD
即CD=CF,AB=AE
又∵AB=CD,
∴CF=AE,
∵AD=BC,∴AE-AD=CF-BC
即DE=BF