用数学归纳法
n-1时 式子等于133,成立
假设n=k成立
则n=k+1时
式子=11*11^(k+2)+144*12^(2k+1)=11*(11^(k+2)+12^(2k+1))+133*12^(2k+1)能被133整除.
所以n=k+1成立.
得证
用数学归纳法
n-1时 式子等于133,成立
假设n=k成立
则n=k+1时
式子=11*11^(k+2)+144*12^(2k+1)=11*(11^(k+2)+12^(2k+1))+133*12^(2k+1)能被133整除.
所以n=k+1成立.
得证