sin(A+B)/sin(A-B)=(sinAcosB+cosAsinB)/(sinAcosB-cosAsinB)=p/q
tanA/tanB=sinAcosB/sinBcosA=[(sinAcosB+cosAsinB)+(sinAcosB-cosAsinB)]/[(sinAcosB+cosAsinB)-(sinAcosB-cosAsinB)]=(p+q)/(p-q)
似乎是合比性质.
sin(A+B)/sin(A-B)=(sinAcosB+cosAsinB)/(sinAcosB-cosAsinB)=p/q
tanA/tanB=sinAcosB/sinBcosA=[(sinAcosB+cosAsinB)+(sinAcosB-cosAsinB)]/[(sinAcosB+cosAsinB)-(sinAcosB-cosAsinB)]=(p+q)/(p-q)
似乎是合比性质.