由于:log2(x)+log2[3*2^(k-1)-x] >=(2k-1) -----[1]
则由真数大于0
得:x>0,且3*2^(k-1)-x>0
设t=2^k (t>0)
则:0=log2[2^(2k-1)]
即:log2[(3/2)tx-x^2]>=log2[(1/2)t^2]
则:(3/2)tx-x^2>=(1/2)t^2
2x^2-3tx+t^2
由于:log2(x)+log2[3*2^(k-1)-x] >=(2k-1) -----[1]
则由真数大于0
得:x>0,且3*2^(k-1)-x>0
设t=2^k (t>0)
则:0=log2[2^(2k-1)]
即:log2[(3/2)tx-x^2]>=log2[(1/2)t^2]
则:(3/2)tx-x^2>=(1/2)t^2
2x^2-3tx+t^2