证明:由an=3a(n-1)/[a(n-1)+3] (n>=2)可得
a(n+1)=3an/(an+3) (n>=1)
由于{an}各项均不为零,此式两边取倒数得
1/a(n+1)=(an+3)/3an (n>=1)
化简得 [1/a(n+1)]-(1/an)=1/3 (n>=1)
即{1/an}(n>=1)为公差为1/3的等差数列
即{bn}是等差数列
证明:由an=3a(n-1)/[a(n-1)+3] (n>=2)可得
a(n+1)=3an/(an+3) (n>=1)
由于{an}各项均不为零,此式两边取倒数得
1/a(n+1)=(an+3)/3an (n>=1)
化简得 [1/a(n+1)]-(1/an)=1/3 (n>=1)
即{1/an}(n>=1)为公差为1/3的等差数列
即{bn}是等差数列