解题思路:根据全等三角形的判定方法SAS可证得△BEC≌△ADB,根据各角的关系及三角形内角、外角和定理可证得∠BPQ=60°,即可得结论.
证明:∵△ABC是等边三角形,
∴AB=AC=BC,∠C=∠ABC=60°,
∵AE=CD,
∴EC=BD;
∴△BEC≌△ADB(SAS),
∴∠EBC=∠BAD;
∵∠ABE+∠EBC=60°,则∠ABE+∠BAD=60°,
∵∠BPQ是△ABP外角,
∴∠ABP+∠BAP=60°=∠BPQ,
又∵BQ⊥AD,
∴∠PBQ=30°,
∴BP=2PQ.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形.
考点点评: 本题主要考查了全等三角形的判定和性质,涉及到等边三角形、直角三角形、三角形内角及外角和定理等知识点,是一道难度中等的综合题型.