直角梯形ABCD中,AB∥CD,AD⊥AB,AC,BD交于E
AB=12,AD=40
S△CDE-S△ABE=320
S△CDE=320+S△ABE
两边同时加S△ADE:
S△CDE+S△ADE=320+S△ABE+S△ADE
S△ADC=320+S△ABD
又:S△ABD=1/2AB*AD=1/2*12*40=240
∴S△ADC = 320+240 = 560
∴1/2CD*AD=560
CD = 2*560/AD = 2*560/14 = 80
∴SABCD = 1/2(AB+CD)*AD = 1/2*(12+80)*40 = 1840平方分米