(1)向量a=(4,3),b=(-1,2)
|b|=√[(-1)^2+2^2]=√5.
|a|=√(3^2+4^2)=5.
a.b=(-1)*4+2*3=2.
cosα=a.b/|a||b| =2/5*√5 =2√5/25.
(2) 向量a-λb与2a+b垂直,
则(a-λb)•(2a+b)=0,
即2a^2+(1-2λ)a•b-λb^2=0,
即50+2(1-2λ) -5λ=0,λ=52/9.
(3)
a+tb=(4-t,3+2t)
|a+tb|^2
=(4-t)^2+(3+2t)^2
=5t^2+4t+25
=5(t+2/5)^2+121/5,
所以t=-2/5时,|a+tb|^2取到最小值121/5,
此时|a+tb|取到最小值11√5/5.
(|a-tb|^2)''=10>0 (min)
min|a-tb|^2 = 5(-4/5)^2+8(-4/5)+13 = 16/5-32/5+13=49/5
min|a-tb| = 7√5/5
(4)
本题需要知道向量c的坐标,才可以计算.