f(x)=2sinxcos(3π/2+x)+√3sin(π+x)*cosx+sin(π/2-x)*cosx-1/2

1个回答

  • (1)

    f(x)=2sinxsinx+√3(-sinx)cosx+cosxcosx-1/2

    =(1-cos2x)-√3/2sin2x+1/2(1+cos2x)-1/2

    =1-1/2cos2x-√3/2sin2x+1/2-1/2

    =1-sin(2x+π/6)

    T=2π/2=π

    y(MAX)=2

    y(min)=0

    值域为;

    [0,2]

    (2)

    当sin(2x+π/6)=-1

    2x+π/6= - π/2+2kπ==>x= - π/3+kπ时,函数取最大值,

    最大值的集合:

    {x| x= - π/3+kπ,k∈z}

    当sin(2x+π/6)=1

    2x+π/6= π/2+2kπ==>x= π/6+kπ时,函数取最小值,

    最小值的集合:

    {x| x=π/6+kπ,k∈z}

    (3)

    把中间变量 :2x+π/6代入到标准函数的单调减区间中去解出单调增区间的过程:

    π/2+2kπ≤2x+π/6≤3π/2+2kπ

    π/6+kπ≤ x ≤2π/3+kπ

    所以原函数的间调增区间是:

    [π/6+kπ ,2π/3+kπ]