数列{an}中,an=2a(n-1)+2^n+1,a3=27 求an通项公式?

3个回答

  • 待定系数法:

    首先求得a3=27,a2=9,a1=2

    设一整数λ.我们可以先构造一个{(an+λ)/(2^n)}数列.

    (an+λ)/(2^n) - (a(n-1)+λ)/(2^(n-1)) = (an+λ-2a(n-1)-2λ)/(2^n)

    将an=2a(n-1)+2^n+1 代入上式,可得到

    (an+λ)/(2^n) - (a(n-1)+λ)/(2^(n-1) = 1 + (1-λ)/(2^n)

    故此时可令λ=1.

    从而 (an+1)/(2^n) - (a(n-1)+1)/(2^(n-1) = 1

    即数列{(an+λ)/(2^n)}是以1为公差,(a1+1)/2=3/2为首项的等差数列.

    其通项为:(an+λ)/(2^n)=2/3+n-1=1/2+n 移项后可得:

    an=(1/2+n)2^n -1

    代入a1,a2,a3进行验算,亦符合本通式.

    建议你在纸上写一写,可能这个看着并不是很清楚.