f(x)=(a/2)sin2x-(√3)a(cos2x+1)/2+(√3/2)a+b
=(a/2)sin2x-(√3/2)a(cos2x)+b
=asin(2x-π/3)+b
单调递减区间为(5/12π+kπ,11/12π+kπ)(k=0,1,2…)
x∈[0,π/2]时,x=0时f(x)=-2 即-(√3/2)a+b=-2
x=5/12π时f(x)=√3 即a+b=√3
解得a=2,b=√3-2
f(x)=(a/2)sin2x-(√3)a(cos2x+1)/2+(√3/2)a+b
=(a/2)sin2x-(√3/2)a(cos2x)+b
=asin(2x-π/3)+b
单调递减区间为(5/12π+kπ,11/12π+kπ)(k=0,1,2…)
x∈[0,π/2]时,x=0时f(x)=-2 即-(√3/2)a+b=-2
x=5/12π时f(x)=√3 即a+b=√3
解得a=2,b=√3-2