令t=3x,则
原式=dx/((2+3x)(2-3x))=(dx/(1/(2+3x)+1/(2-3x)))/4=(dx/(2+3x)+dx/(2-3x))/4
=(d(3x)/(2+3x)+d(3x)/(2-3x))/(4*3)=(dt/(2+t)+dt/(2-t))/12
=(ln(t+2)-ln(2-t))/12
=(ln(3x+2)-ln(2-3x))/12
令t=3x,则
原式=dx/((2+3x)(2-3x))=(dx/(1/(2+3x)+1/(2-3x)))/4=(dx/(2+3x)+dx/(2-3x))/4
=(d(3x)/(2+3x)+d(3x)/(2-3x))/(4*3)=(dt/(2+t)+dt/(2-t))/12
=(ln(t+2)-ln(2-t))/12
=(ln(3x+2)-ln(2-3x))/12