a向量⊥b向量,
则n*a(n+1)+(n+1)*an=0
即a(n+1)/an=-(n+1)/n
所以
a2/a1=-2/1
a3/a2=-3/2
a4/a3=-4/3
……
a100/a99=-100/99 相乘
a100/a1=-100/1
所以 a100=-100
a向量⊥b向量,
则n*a(n+1)+(n+1)*an=0
即a(n+1)/an=-(n+1)/n
所以
a2/a1=-2/1
a3/a2=-3/2
a4/a3=-4/3
……
a100/a99=-100/99 相乘
a100/a1=-100/1
所以 a100=-100