c/a=√3/2,
∴c^2/a^2=3/4,b^2/a^2=1/4,
设椭圆方程为x^2/(4b^2)+y^2/b^2=1,b>0,
点P(0,3/2)到椭圆上的点(2bcost,bsint)的距离
d=√[(2bcost)^2+(bsint-3/2)^2]
=√[4b^2-3b^2*(sint)^2-3bsint+9/4]
=√{-3b^2*[sint-1/(2b)]^2+3+4b^2},
最大值为√7,
∴3+4b^2=7,b^2=1,b=1.
∴椭圆方程为x^2/4+y^2=1.
c/a=√3/2,
∴c^2/a^2=3/4,b^2/a^2=1/4,
设椭圆方程为x^2/(4b^2)+y^2/b^2=1,b>0,
点P(0,3/2)到椭圆上的点(2bcost,bsint)的距离
d=√[(2bcost)^2+(bsint-3/2)^2]
=√[4b^2-3b^2*(sint)^2-3bsint+9/4]
=√{-3b^2*[sint-1/(2b)]^2+3+4b^2},
最大值为√7,
∴3+4b^2=7,b^2=1,b=1.
∴椭圆方程为x^2/4+y^2=1.