延长MD到K,使MD=DK,连接AD,NK,CK
∵D为BC中点,∠MDB=∠CDK
∴⊿BMD≌⊿DKC
∴∠MBD=∠DCK,BM=KC
∵∠MDN=90°,MD²+ND²=BM²+CN²=DK²+ND²=NC²+CK²
∴∠NCK=90º(勾股定理)
∴∠NCD和∠KCN互余
∵∠MBD=∠DCK
∴∠B+∠ACB=90º
∴∠BAC=90º
又∵,D为BC中点,
∴AD=1/2BC
∴AD²=1/4BC²
又∵AB²+AC²=BC²
∴AD²=1/4(AB²+AC²)
延长MD到K,使MD=DK,连接AD,NK,CK
∵D为BC中点,∠MDB=∠CDK
∴⊿BMD≌⊿DKC
∴∠MBD=∠DCK,BM=KC
∵∠MDN=90°,MD²+ND²=BM²+CN²=DK²+ND²=NC²+CK²
∴∠NCK=90º(勾股定理)
∴∠NCD和∠KCN互余
∵∠MBD=∠DCK
∴∠B+∠ACB=90º
∴∠BAC=90º
又∵,D为BC中点,
∴AD=1/2BC
∴AD²=1/4BC²
又∵AB²+AC²=BC²
∴AD²=1/4(AB²+AC²)