已知任意四边形ABCD,分别以各边作四个正方形,O,P,Q,R分别为四个正方形的对角线交点求证:线段RQ垂直且等于 线段

3个回答

  • 这里引用楼上的图.

    AG与ID夹角=A1

    GB与ID夹角=A1-π/2

    BJ与ID夹角=A1-π/2-3π/4+A3+π/4=A1+A2-π

    JC与ID夹角=A1+A2-π-π/2=A1+A2+π/2

    A=(0,a1)

    D=(a1,0)

    AG=a2(cos(A1),sin(A1))

    G=(a2*cos(A1),a2*sin(A1)+a1)

    GB=a2(cos(A1-π/2),sin(A1-π/2))=a2(sin(A1),-cos(A1))

    B=(a2*cos(A1)+a2*sin(A1),a2*sin(A1)+a1-a2*cos(A1))

    B=(sqrt(2)a2*sin(A1+π/4),a1+sqrt(2)sin(1-π/4))

    BJ=a3(cos(A1+A2-π),sin(A1+A2-π))=a3(-cos(A1+A2),-sin(A1+A2))

    J=(sqrt(2)a2*sin(A1+π/4)-a3*cos(A1+A2),a1+a2*sqrt(2)sin(A1-π/4)-a3sin(A1+A2))

    JC=a3(cos(A1+A2+π/2),sin(A1+A2+π/2))=a3(-sin(A1+A2),cos(A1+A2))

    C=(sqrt(2)a2*sin(A1+π/4)-a3*cos(A1+A2)-a3sin(A1+A2),a1+a2*sqrt(2)sin(A1-π/4)-a3sin(A1+A2)

    +cos(A1+a2))

    C=(sqrt(2)a2*sin(A1+π/4)-a3*sqrt(2)sin(A1+A2+π/4),a1+a2sqrt(2)sin(A1-π/4)-a3*sqrt(2)sin

    (A1+A2-π/4))

    DC=(sqrt(2)a2*sin(A1+π/4)-a3*sqrt(2)sin(A1+A2+π/4)-a1,a1+a2sqrt(2)sin(A1-π/4)-a3*sqrt(2)

    sin(A1+A2-π/4))

    DC中点是M=1/2(C+D)

    M=1/2(sqrt(2)a2*sin(A1+π/4)-a3*sqrt(2)sin(A1+A2+π/4)+a1,a1+a2sqrt(2)sin(A1-π/4)-a3*sqrt

    (2)sin(A1+A2-π/4))

    DC=(x,y)=>MH=1/2(y,-x)

    MH=1/2(a1+a2sqrt(2)sin(A1-π/4)-a3*sqrt(2)sin(A1+A2-π/4),-sqrt(2)a2*sin(A1+π/4)+a3*sqrt

    (2)sin(A1+A2+π/4)+a1))

    H=(sqrt(2)a2*sin(A1)cos(π/4)-a3*sqrt(2)sin(A1+A2)cos(π/4)+a1,-a2*sqrt(2)*sin(π/4)cos(A1)

    +a3*sqrt(2)sin(π/4)cos(A1+A2)+a1)

    H=(a2*sin(A1)-a3*sin(A1+A2)+a1,a3*cos(A1+A2)-a2*cos(A1)+a1)

    IJ=(sqrt(2)a2*sin(A1+π/4)-a3*cos(A1+A2),a1+a2*sqrt(2)sin(A1-π/4)-a3sin(A1+A2))

    GH=(a2*sin(A1)-a3*sin(A1+A2)-a2*cos(A1)+a1,a3*cos(A1+A2)-a2*cos(A1)-a2*sin(A1)+a1-a1)

    GH=(sqrt(2)*a2*sin(A1-π/4)-a3*sin(A1+A2)+a1,a3*cos(A1+A2)-sqrt(2)*a2*sin(A1+π/4))

    因为x(IJ)=-y(GH),y(IJ)=x(GH)

    IJ.GH=0

    从而IJ⊥GH