an=Sn-Sn-1=(n^2+2n)-[(n-1)^2+2(n-1)]=
1个回答
Sn-Sn-1=(n^2+2n)-[(n-1)^2+2(n-1)]
=n^2+2n-(n^2-2n+1+2n-2)
=n^2+2n-n^2+2n-1-2n+2
=2n+1
相关问题
已知Sn=2^n+1,求an根据题意an=Sn-Sn-1=2^n+1-2^n-1=2^(n-1)然而,验算无法通过{Sn
已知数列{an}中,a1=√2/2,an=[2(Sn)^2]/(2Sn +1)(n≥2,n∈N*)
an=(2n-1)*2^(n-1),求Sn
数列{an}的前n项和为Sn,已知a1=1/2,Sn=n^2an-n(n-1),n=1,2,… (
数列{an}的前n项和Sn,Sn+an=-1/2n²-3/2n+1(n∈N+) (1)设bn=an+n,证明:
已知等差数列{an}的前n项和为Sn,且(2n-1)Sn+1 -(2n+1)Sn=4n²-1(n∈N*)
an=1/(n-1)(n+2),求sn
已知an=3^n+(1/2)^n求Sn 已知an=2^n+(2n+3)求Sn 已知an=(-1)^n
设Sn是数列{an}(n∈N+)的前n项和,a1=1,且Sn^2=3n^2·an+[S(n-1)]^2 an≠0,n=2
1、an前n项和为sn,sn=2n^2+1,求an