解题思路:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可.
∵MN是边AB的中垂线,
∴AM=BM,
∴∠BAM=∠B,
设∠B=x,则∠BAM=x,
∵∠C=3∠B,∴∠C=3x,
在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,
∴x=26°,
即∠B=26°.
点评:
本题考点: 线段垂直平分线的性质.
考点点评: 本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,关键是求出关于x的方程,注意:线段垂直平分线上的点到线段两端点的距离相等,等边对等角.