f'(x)=3kx2-6(k+1)x=0(k>0),
解得:x=0或[2k+2/k]
而[2k+2/k]>2
令f'(x)=3kx2-6(k+1)x<0,解得x∈(0,[2k+2/k])
∴f(x)的单调减区间为(0,[2k+2/k])
根据题意可知(0,4)=(0,[2k+2/k]),
即[2k+2/k]=4,解得k=1
所以k的值为1.
f'(x)=3kx2-6(k+1)x=0(k>0),
解得:x=0或[2k+2/k]
而[2k+2/k]>2
令f'(x)=3kx2-6(k+1)x<0,解得x∈(0,[2k+2/k])
∴f(x)的单调减区间为(0,[2k+2/k])
根据题意可知(0,4)=(0,[2k+2/k]),
即[2k+2/k]=4,解得k=1
所以k的值为1.