∵ab互为相反数,∴ab的和为0.∵cd互为倒数,∴cd的积为1.∵x的绝对值=1,∴x是±1
设x为负值时
原式=(1-x)/1+(0+1)*x
=(1-x)/1+1*x
=(1-x)/1+x
=1-(-1)/1+(-1)
=1+1/0
=2/0
=0
设x为正数
原式=(1-x)/1+(0+1)*x
=(1-x)/1+1*x
=(1-x)/1+x
=1-1/1+1
=0/2
=0
∵ab互为相反数,∴ab的和为0.∵cd互为倒数,∴cd的积为1.∵x的绝对值=1,∴x是±1
设x为负值时
原式=(1-x)/1+(0+1)*x
=(1-x)/1+1*x
=(1-x)/1+x
=1-(-1)/1+(-1)
=1+1/0
=2/0
=0
设x为正数
原式=(1-x)/1+(0+1)*x
=(1-x)/1+1*x
=(1-x)/1+x
=1-1/1+1
=0/2
=0