已知a>2,求证:log(a-1)a>loga(a+1)

1个回答

  • 解题思路:(法一)利用作差法:只要证明

    lo

    g

    (a−1)

    a−lo

    g

    a

    (a+1)=

    1

    log

    a

    (a−1)

    −lo

    g

    a

    (a+1)

    =

    1−(

    log

    a

    (a−1))•(

    log

    a

    (a+1))

    log

    a

    (a−1)

    >0即可

    (法二)作商法:只要证明

    log

    (a−1)

    a

    log

    a

    (a+1)

    1

    log

    a

    (a−1)

    log

    a

    (a−1)

    1

    (

    log

    a

    (a−1))•(

    log

    a

    (a+1))

    >1即可

    证明(法一):∵log(a−1)a−loga(a+1)=

    1

    loga(a−1)−loga(a+1)

    =

    1−(loga(a−1))•(loga(a+1))

    loga(a−1).

    因为a>2,所以,loga(a-1)>0,loga(a+1)>0,

    所以,loga(a-1)•loga(a+1)≤[

    loga(a−1)+loga(a+1)

    2]2

    =

    [loga(a2−1)]2

    4<

    [logaa2]2

    4=1

    所以,log(a-1)a-loga(a+1)>0,命题得证.

    证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,

    所以,

    log(a−1)a

    loga(a+1)=

    1

    loga(a−1)

    loga(a−1)=

    1

    (loga(a−1))•(loga(a+1))

    由法1可知:loga(a-1)•loga(a+1)≤[

    loga(a−1)+loga(a+1)

    2]2

    =

    [loga(a2−1)]2

    4<

    [logaa2]2

    4=1

    1

    loga(a−1)•loga(a+1)>1.

    故命题得证

    点评:

    本题考点: 对数函数的单调性与特殊点.

    考点点评: 本题主要考查了不等式的证明方法的常用方法:作差证明差大于0,作商证明商大于1.