解题思路:(法一)利用作差法:只要证明
lo
g
(a−1)
a−lo
g
a
(a+1)=
1
log
a
(a−1)
−lo
g
a
(a+1)
=
1−(
log
a
(a−1))•(
log
a
(a+1))
log
a
(a−1)
>0即可
(法二)作商法:只要证明
log
(a−1)
a
log
a
(a+1)
=
1
log
a
(a−1)
log
a
(a−1)
=
1
(
log
a
(a−1))•(
log
a
(a+1))
>1即可
证明(法一):∵log(a−1)a−loga(a+1)=
1
loga(a−1)−loga(a+1)
=
1−(loga(a−1))•(loga(a+1))
loga(a−1).
因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)•loga(a+1)≤[
loga(a−1)+loga(a+1)
2]2
=
[loga(a2−1)]2
4<
[logaa2]2
4=1
所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
log(a−1)a
loga(a+1)=
1
loga(a−1)
loga(a−1)=
1
(loga(a−1))•(loga(a+1))
由法1可知:loga(a-1)•loga(a+1)≤[
loga(a−1)+loga(a+1)
2]2
=
[loga(a2−1)]2
4<
[logaa2]2
4=1
∴
1
loga(a−1)•loga(a+1)>1.
故命题得证
点评:
本题考点: 对数函数的单调性与特殊点.
考点点评: 本题主要考查了不等式的证明方法的常用方法:作差证明差大于0,作商证明商大于1.