Sn=(a1+an)*n/2=(2a1+(n-1)d)*n/2=(d/2)n^2+(a1-d/2)n
数列是等差数列,证明Sn = An^2 + Bn
3个回答
相关问题
-
证明:数列{an}为等差数列的充要条件是{an}前n项和Sn=An^2+Bn
-
数列是等差数列{an}和{bn},证明:数列{an+b}是等差数列
-
数列{an}为等差数列,数列{bn}满足bn=2an+1+a2n-1,证明{bn}为等差数列
-
(2014•南京模拟)数列{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),设Sn为{bn}的
-
已知数列{an}是等差数列,公差d>0,前n项和Sn=【(an+1)/2】^2,bn=(-1)^n*Sn,求数列{bn}
-
证明数列是等差数列已知:数列{an}的Sn=nan(n是正整数),证明{an}是等差数列.
-
设数列Bn的前n项和为Sn,且Bn=2-2Sn.数列An为等差数列,且A5=10,A7=14.(1)求数列An、{bn}
-
数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列
-
证明:数列{an}为等差数列的充要条件是数列{an}的前n项和为sn=an²+bn(其中啊a,b为常数)
-
已知数列{an}前n项的和Sn=an2+bn(a≠0)是数列{an}成等差数列的( )