f(x)=2x^3-6ax+b
f(2)=16-12a+b,
f'(x)=6x^2-6a,
f'(2)=24-6a,
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为直线:6x-y+4=0①(改题了),
所以24-6a=6,a=3,f(2)=b-20.于是切线方程是y-(b-20)=6(x-2),即6x-y+b-32=0,
与①比较得b-32=4,b=36.
(2)y=f(x)在[-1,3]上为增函数,
f'(x)>=0在[-1,3]成立,
a
f(x)=2x^3-6ax+b
f(2)=16-12a+b,
f'(x)=6x^2-6a,
f'(2)=24-6a,
(1)若曲线y=f(x)在点(2,f(2))处的切线方程为直线:6x-y+4=0①(改题了),
所以24-6a=6,a=3,f(2)=b-20.于是切线方程是y-(b-20)=6(x-2),即6x-y+b-32=0,
与①比较得b-32=4,b=36.
(2)y=f(x)在[-1,3]上为增函数,
f'(x)>=0在[-1,3]成立,
a