(1)f(1+x)=(1+x)²+b(1+x)+c=x²+2x+1+bx+b+c=x²+(b+2)x+(b+c+1)
f(1-x)=(1-x)²+b(1-x)+c=x²-2x+1-bx+b+c=x²-(b+2)x+(b+c+1)
∵f(1+x)=f(1-x)
∴b+2=-(b+2) ∴b=-2.
也就有:f(x)=x²-2x+c.
那么方程f(x)=x就可以变化为:x²-2x+c=x,x²-3x+c=0.
方程具有相等的实根,则△=b²-4ac=(-3)²-4×1×c=0,得到:c=9/4.
所以f(x)=x²-2x+9/4.
(2)由f(x)≥2(a-1)x+a+1/4恒成立,所以x²-2x+9/4≥2(a-1)x+a+1/4
化简,有:x²-2ax+(2-a)≥0.
该抛物线的顶点坐标为:x=-(-2a)/2=a,y=[4×1×(2-a)-(-2a)²]/4=2-a-a².
当x≥-1时,即a≥-1;
y≥0,2-a-a²=-(a+1)(a-2)≥0;由a≥-1得a+1≥0,所以a-2≤0,即a≤2.
因此,a的取值范围为:-1≤a≤2.