AP=QB=t,AB=10,PB=10-t
①当PB=QB时,10-t=t t=5
②当PQ=BQ时,过点Q作QF⊥PB于点F,则FB=FP=1/2PB
QB=t,COS∠B=CB/AB=FB/QB
即4/5=FB/t
FB=0.8t,
PB=1.6t=10-t
t=50/13
③PQ=PB时,过点P作PE⊥QB于点E
则QE=BE=1/2QB=0.5t,cos∠B=CB/AB=QB/PB
即4/5=0.5t/PB
PB=0.4t
10-t=0.4t
t=50/7
综上所述当t=5或t=50/13或t=50/7时,△PQB为等腰三角形