已知Un=(3+n)*(1-p)^(n-1) S=U1+U2+.+ 求S

1个回答

  • Un=3*(1-p)^(n-1)+n*(1-p)^(n-1)

    Sn=3sum[(1-p)^(i-1)]+sum[i*(1-p)^(i-1)]

    sum[(1-p)^(i-1)]=1+(1-p)+(1-p)^2+...+(1-p)^(n-1)

    =(1-(1-p)^n)/(1-(1-p))=(1-(1-p)^n)/p

    sum[i*(1-p)^(i-1)]=1+2*(1-p)+3*(1-p)^2+...+n*(1-p)^(n-1)

    考虑f(x)=1+x+x^2+x^3+...+x^n=(1-x^(n+1))/(1-x)

    f'(x)=1+2x+3x^2+...+nx^(n-1)=[(1-x^(n+1))/(1-x)]'=(n*x^(n+1)-(n+1)x^n+1)/(x-1)^2

    f'(1-p)=((1-p)^n*(-1-np)+1)/p^2

    Sn=3sum[(1-p)^(i-1)]+sum[i*(1-p)^(i-1)]=

    =3*(1-(1-p)^n)/p+((1-p)^n*(-1-np)+1)/p^2