原式=[2//(m+n)^3][(m+n)/mn]+[1/(m+n)^2][(m^2+n^2)/m^2n^2]
=2/[mn(m+n)^2]+(m^2+n^2)/[m^2n^2(m+n)^2]
=(2mn+m^2+n^2)/[m^2n^2(m+n)^2]
=(m+n)^2/[m^2n^2(m+n)^2]
=1/m^2n^2
原式=[2//(m+n)^3][(m+n)/mn]+[1/(m+n)^2][(m^2+n^2)/m^2n^2]
=2/[mn(m+n)^2]+(m^2+n^2)/[m^2n^2(m+n)^2]
=(2mn+m^2+n^2)/[m^2n^2(m+n)^2]
=(m+n)^2/[m^2n^2(m+n)^2]
=1/m^2n^2