证明:∠ACB=∠CFM+∠M
∠M=∠ACB-∠CFM
=∠ACB-∠EFA ①
因为AD⊥EM AD平分∠BAC
所以∠EFA+∠CAD=90°
所以∠EFA=90°-∠CAD
=90°-∠CAB/2
=90°-(180°-∠B-∠ACB)/2
=90°-(90°-∠B/2-∠ACB/2)
=1/2∠B+1/2∠ACB ②
根据①②得:
∠M=∠ACB-∠EFA
=∠ACB-(1/2∠B+1/2∠ACB)
=∠ACB-1/2∠B-1/2∠ACB
=1/2∠ACB-1/2∠B
=1/2(∠ACB-∠B)