(1)由
解得A(0,0),B(2p,2p)
∴
,
∴p=2
(2)由(1)得x 2=4y,A(0,0),B(4,4)
假设抛物线L上存在异于点A、B的点C
,
使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线令圆的圆心为N(a,b),
则由
得
得
∵抛物线L在点C处的切线斜率
又该切线与NC垂直,
∴
∴
∵t≠0,t≠4,
∴t=﹣2 故存在点C且坐标为(﹣2,1).
(1)由
解得A(0,0),B(2p,2p)
∴
,
∴p=2
(2)由(1)得x 2=4y,A(0,0),B(4,4)
假设抛物线L上存在异于点A、B的点C
,
使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线令圆的圆心为N(a,b),
则由
得
得
∵抛物线L在点C处的切线斜率
又该切线与NC垂直,
∴
∴
∵t≠0,t≠4,
∴t=﹣2 故存在点C且坐标为(﹣2,1).