可逆矩阵与非零向量的乘积为何必不为零
1个回答
设Ax=0,x为非0向量,A可逆
由于A可逆,所以x=(A^(-1))0=0
与x非0矛盾
相关问题
可逆矩阵和一个非零列向量乘积为非零向量为什么?
矩阵ab乘积为零矩阵,b行列式非零,推出矩阵a为零矩阵?
怎么证明:有一行(列)元素全为零的矩阵必不可逆?
给定一非对称矩阵,求一非零对称矩阵与之相乘,使乘积仍为对称矩阵
非零向量的转秩与该向量的乘积的秩等于该向量的秩么
为什么矩阵特征值能为零,特征值为零了特征向量不就为零了嘛
乘积为非零常数成正比例还是反比例,如果乘积不为非零常数成正比例还是反比例
如果A为可逆矩阵,则它一定不是零矩阵对吗
问一个小问题 ,实数0与一个非零向量的积是零向量,那么实数0与零向量的积是什么?
实数0与向量a的乘积是什么?请问,实数0与非零向量a的乘积是什么?向量0与非零实数a的乘积是什么?向量0与非零向量a的乘