1.取BB1中点M,连接HM,C1M
由M,F分别为BB1,CC1中点,可得BM=BB1/2,C1F=CC1/2
正方体中,易得BB1=CC1,CC1‖BB1
∴BM=C1F,BM‖C1F
∴四边形C1MBF为平行四边形,有C1M‖BF ①
由H,M分别为AA1,BB1中点,易证A1H=AA1/2,B1M=BB1/2
正方体中,易得AA1=BB1,AA1‖BB1
∴A1H=B1M,A1H‖B1M
∴四边形A1HMB1为平行四边形,有A1B1=HM,A1B1‖HM
正方体中,易得A1B1=C1D1,A1B1‖C1D1
∴HM=C1D1,HM‖C1D1
∴四边形C1D1HM为平行四边形
∴D1H‖C1M
联合①式,有BF‖D1H
2.取BD中点N,连接EN,D1N
由N,E分别为DB,CB中点,可知NE为△BDC中,边CD的中位线
有NE=CD/2,NE‖CD
∵G为C1D1中点
∴D1G=C1D1/2
正方体中,易得C1D‖CD,即D1G‖CD,且CD=C1D1
∴NE=D1G,NE‖D1G
∴NEGD1为平行四边形
∴D1N‖GE
而D1N∈面BB1D1D,且GE明显不在面BB1D1D上
∴GE‖面BB1D1D
3.在正方体中,易得BB1=DD1,BB1‖DD1
∴面B1BDD1为平行四边形
∴BD‖B1D1
由第一问结论有:BF‖D1H
而BD,BF是面BDF中的两条相交直线
B1D1,D1H是面B1D1H中的两条相交直线
∴面BDF‖面B1D1H