解题思路:(1)由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′.(2))由△AED≌△CEB′,得出EA=EC,所以点E在线段AC的垂直平分线上(3)阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长.
(1)证明:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°
∵∠B′EC=∠DEA,
在△AED和△CEB′中,
∠B′EC=∠DEA
∠B′=∠D
B′C=AD
∴△AED≌△CEB′(AAS);
(2)∵△AED≌△CEB′,
∴EA=EC,
∴点E在线段AC的垂直平分线上.
(3)阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3
=22.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.