判断并证明y=x/x^+1在(0,+∞)上的单调性

1个回答

  • y = x/x^2+1 = 1/(x+1/x)

    分母x+1/x为对勾函数:

    x<-1时x+1/x单调增,y = 1/(x+1/x)单调减;

    -1<x<0时x+1/x单调减,y = 1/(x+1/x)单调增;

    0<x<1时x+1/x单调减,y = 1/(x+1/x)单调增;

    x>1时x+1/x单调增,y = 1/(x+1/x)单调减.

    x∈R,∴y = 1/(x+1/x)单调减区间(-∞,-1)U(1,+∞),单调增区间(-1,1)

    证明:

    (一)x∈(-∞,-1),令x1<x2<-1

    f(x2)-f(x1) = x2/(x2^2+1)-x1/(x1^2+1)

    = (x1^2x2+x2-x1x2^2-x1)/{(x2^2+1)(x1^2+1)}

    = (x2-x1)(1-x1x2)/{(x2^2+1)(x1^2+1)}

    ∵x1<x2<-1

    ∴x2-x1>0,1-x1x2<0

    ∴f(x2)-f(x1)=(x2-x1)(1-x1x2)/{(x2^2+1)(x1^2+1)}<0,

    ∴x∈(-∞,-1)时单调减.

    (二)x∈(-1,1),令-1<x1<x2<1

    f(x2)-f(x1) = x2/(x2^2+1)-x1/(x1^2+1)

    = (x1^2x2+x2-x1x2^2-x1)/{(x2^2+1)(x1^2+1)}

    = (x2-x1)(1-x1x2)/{(x2^2+1)(x1^2+1)}

    ∵-1<x1<x2<1

    ∴x2-x1>0,1-x1x2>0

    ∴f(x2)-f(x1)=(x2-x1)(1-x1x2)/{(x2^2+1)(x1^2+1)}>0,

    ∴x∈(-1,1)时单调增.

    (三)x∈(1,∞1),令1<x1<x2

    f(x2)-f(x1) = x2/(x2^2+1)-x1/(x1^2+1)

    = (x1^2x2+x2-x1x2^2-x1)/{(x2^2+1)(x1^2+1)}

    = (x2-x1)(1-x1x2)/{(x2^2+1)(x1^2+1)}

    ∵1<x1<x2

    ∴x2-x1>0,1-x1x2<0

    ∴f(x2)-f(x1)=(x2-x1)(1-x1x2)/{(x2^2+1)(x1^2+1)}<0,

    ∴x∈(1,+∞)时单调减.