tan3x/tanx = (sin3x / sinx ) * (cosx / cos3x)
lim (cosx / cos3x) = lim -sinx / [ (-3) sin3x] = -1/3
lim (sin3x / sinx ) = -1
∴ 原式 = 1/3
极限如果存在,必唯一.
tan3x/tanx = (sin3x / sinx ) * (cosx / cos3x)
lim (cosx / cos3x) = lim -sinx / [ (-3) sin3x] = -1/3
lim (sin3x / sinx ) = -1
∴ 原式 = 1/3
极限如果存在,必唯一.