1/(1×3) + 1/(3×5) + 1/(5×7) + …… + 1/(99×101)
= (1/2)×( 1 - 1/3 )+ (1/2)×(1/3 - 1/5) + (1/2)×(1/5 - 1/7) + …… + (1/2)×(1/99 - 1/101)
= (1/2)×( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + …… + 1/99 - 1/101)
= (1/2)×( 1 - 1/101)
= (1/2)×(100/101)
= 50/101
1/(1×3) + 1/(3×5) + 1/(5×7) + …… + 1/(99×101)
= (1/2)×( 1 - 1/3 )+ (1/2)×(1/3 - 1/5) + (1/2)×(1/5 - 1/7) + …… + (1/2)×(1/99 - 1/101)
= (1/2)×( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + …… + 1/99 - 1/101)
= (1/2)×( 1 - 1/101)
= (1/2)×(100/101)
= 50/101