由A、B两点可知抛物线的对称轴为x=1,设抛物线的方程式为y=a(x-1)^2+b,代入B、C坐标可解得a=-1,b=9,抛物线解析式为y=-(x-1)^2+9=-x^2+2x+8,顶点D的坐标为(1,9)
由C、D坐标可求出直线CD的解析式为x-y+8=0,线段OB的垂直平分线为x=2,设存在P(2,m)令P到直线CD的距离等于点P到原点O的距离,
那么有√(4+m^2)=|2-m+8|/√2,m^2+20m-92=0,解得m=-10±8√3
形如y=a(x+b)^2+c的抛物线沿其对称轴平移时,a与b均不变,只有c变
可得到F(4,12),抛物线最多可向下平移到与直线CD:y=x+8相切为止,此时两者只有一个交点,联立y=-(x-1)^2+b与y=x+8消去y,得到x^2-x+9-b=0只有一个根,求出b=9-1/4=35/4,向下最多平移四分之一个单位长度
向上平移最多可至抛物线过E点,即(-8,0)在y=-(x-1)^2+b上,解得b=81,向上最多可平移(81-9=)72个单位长度