证明:∵ABCD是正方形,
∴OD=OC,
又∵DE=CF,
∴OD﹣DE=OC﹣CF,
即OF=OE,
在RT△AOE和RT△DOF中,
,
∴△AOE≌△DOF,
∴∠OAE=∠ODF,
∵∠OAE+∠AEO=90°,∠AEO=∠DEM,
∴∠ODF+∠DEM=90°,
即可得AM⊥DF.
证明:∵ABCD是正方形,
∴OD=OC,
又∵DE=CF,
∴OD﹣DE=OC﹣CF,
即OF=OE,
在RT△AOE和RT△DOF中,
,
∴△AOE≌△DOF,
∴∠OAE=∠ODF,
∵∠OAE+∠AEO=90°,∠AEO=∠DEM,
∴∠ODF+∠DEM=90°,
即可得AM⊥DF.