设BD与CE的交叉点为F
已知:CE是角ACB的平分线
所以:AE=ED
所以:角ADE=角BDE
角BDE=角ACE+角CBD=40度
因此:角BDE=20度
角DFE=角CFB=180度-(角BCE+角CBD)=150度
由此可得角CED=10度
设BD与CE的交叉点为F
已知:CE是角ACB的平分线
所以:AE=ED
所以:角ADE=角BDE
角BDE=角ACE+角CBD=40度
因此:角BDE=20度
角DFE=角CFB=180度-(角BCE+角CBD)=150度
由此可得角CED=10度