·已知tan[(a+b)/2]=(√6)/2,tanatanb=13/7,求cos(a-b)=____.

2个回答

  • tan(a+b)

    =2tan[(a+b)/2]/{1-{tan[(a+b)/2]}^2}

    =√6/(1-6/4)

    =-2√6

    tana+tanb

    =tan(a+b)*(1-tanatanb)

    =-2√6*(1-13/7)

    =(12√6)/7

    (tana-tanb)^2

    =(tana+tanb)^2-4tanatanb

    =864/49-52/7

    =500/49

    tan(a-b)=(tana-tanb)/(1+tanatanb)

    [tan(a-b)]^2

    =(tana-tanb)^2/(1+tanatanb)^2

    =(500/49)/(1+13/7)^2

    =5/4

    1+[tan(a-b)]^2=1/[cos(a-b)]^2

    1+5/4=1/[cos(a-b)]^2

    cos(a-b)=2/3

    tana和tanb均为正数,tan[(a+b)/2]也为正数且大于1,所以a、b同象限,cos(a-b)为正