解题思路:(1)由题意要证全等,根据圆周角定理及等量代换得到全等条件即可解答;
(2)连接OC,利用等量代换证明角OCP为直角即可解答.
(1)∵DM⊥AB,
∴∠AMN=90°,
∴∠MAN=90°-∠MNA,
又∵∠MNA=∠CND,
又∵∠D=90°-∠CND,
∴∠MAN=∠D,
又∵AC=CD,
AB为⊙O的直径,
∴∠ACB=90°=∠NCD,
∴△ABC≌△DNC(ASA)
(2)CP是⊙O的切线.证明如下:
连接OC
∵CP为△CND的中线,
∴CP=PD=NP,
∴∠PCD=∠D=∠MAN.
又∠PCD+∠NCP=90°,∠MAN+∠MBC=90°,
∴∠NCP=∠MBC,
又∵OA=OC,
∴∠OCA=∠MAN
∴∠OCA+∠NCP=∠MAN+∠MBC=90°
∴CP是⊙O的切线.
点评:
本题考点: 切线的判定;全等三角形的判定;圆周角定理.
考点点评: 本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.