(I)由题意,m=4时,F(x)=f(x)+g(x)=log ax+log a(2x+2)= log a (2 x 2 +2x) ,
又x∈[1,2],则2x 2+2x∈[4,12].
而函数F(x)=f(x)+g(x)有最小值2,
∴a>1,解得a=2;
(Ⅱ)由题意,0<a<1时,∵f(x)≥2g(x),
∴
1≤x≤2
2x+m-2>0
log a x≥lo g a (2x+m-2 ) 2
⇒
1≤x≤2
m>2-2x
x≤(2x+m-2 ) 2 ,
⇒
1≤x≤2
m>0
4 x 2 +(4m-9)x+(m-2 ) 2 ≥0 ,
令h(x)=4x 2+(4m-9)x+(m-2) 2=4[x-(
9
8 -
m
2 )] 2+(m-2) 2-
(9-4m ) 2
16 ,
(1)当0<m<
1
4 时,1<
9
8 -
m
2 <
9
8 <2 ,
函数h(x)min=(m-2) 2-
(9-4m ) 2
16 ≥0,
解得m无解;
(2)当m≥
1
4 时,函数h(x)在x∈[1,2]上的单调递减,
则h(x) min=h(1)=m 2-1≥0⇒m≥1.
综上,实数m的取值范围为[1,+∞).