已知函数f(x)=log a x,g(x)=log a (2x+m-2),其中x∈[1,2],a>0且a≠1,m∈R.

1个回答

  • (I)由题意,m=4时,F(x)=f(x)+g(x)=log ax+log a(2x+2)= log a (2 x 2 +2x) ,

    又x∈[1,2],则2x 2+2x∈[4,12].

    而函数F(x)=f(x)+g(x)有最小值2,

    ∴a>1,解得a=2;

    (Ⅱ)由题意,0<a<1时,∵f(x)≥2g(x),

    1≤x≤2

    2x+m-2>0

    log a x≥lo g a (2x+m-2 ) 2

    1≤x≤2

    m>2-2x

    x≤(2x+m-2 ) 2 ,

    1≤x≤2

    m>0

    4 x 2 +(4m-9)x+(m-2 ) 2 ≥0 ,

    令h(x)=4x 2+(4m-9)x+(m-2) 2=4[x-(

    9

    8 -

    m

    2 )] 2+(m-2) 2-

    (9-4m ) 2

    16 ,

    (1)当0<m<

    1

    4 时,1<

    9

    8 -

    m

    2 <

    9

    8 <2 ,

    函数h(x)min=(m-2) 2-

    (9-4m ) 2

    16 ≥0,

    解得m无解;

    (2)当m≥

    1

    4 时,函数h(x)在x∈[1,2]上的单调递减,

    则h(x) min=h(1)=m 2-1≥0⇒m≥1.

    综上,实数m的取值范围为[1,+∞).