先化为f(x)=-sin(x+π/3)+ acos(x+π/3)
然后化为同名方程:f(x)=-【(√(1+a²))×sin(x+π/3-β)】其中tanβ=-a
因为其对称轴方程为x=π/2所以sin(π/2+π/3-β)=±1
∴π/2+π/3-β=π/2+kπ
β=π/3-kπ
∴a=-tanβ=-tan(π/3-kπ)=-tan(π/3)=-√3
先化为f(x)=-sin(x+π/3)+ acos(x+π/3)
然后化为同名方程:f(x)=-【(√(1+a²))×sin(x+π/3-β)】其中tanβ=-a
因为其对称轴方程为x=π/2所以sin(π/2+π/3-β)=±1
∴π/2+π/3-β=π/2+kπ
β=π/3-kπ
∴a=-tanβ=-tan(π/3-kπ)=-tan(π/3)=-√3